Multioutput Convolution Spectral Mixture for Gaussian Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Mixture Kernels for Multi-Output Gaussian Processes

Initially, multiple-output Gaussian processes models (MOGPs) were constructed as linear combinations of independent, latent, single-output Gaussian processes (GPs). This resulted in cross-covariance functions with limited parametric interpretation, thus conflicting with single-output GPs and their intuitive understanding of lengthscales, frequencies and magnitudes to name but a few. On the cont...

متن کامل

Flexible Gaussian Processes via Convolution

Spatial and spatio-temporal processes are often described with a Gaussian process model. This model can be represented as a convolution of a white noise process and a smoothing kernel. We expand upon this model by considering convolutions of non-iid background processes. We highlight two particular models based on convolutions of Markov random fields and of time-varying processes. These models ...

متن کامل

Efficient Multioutput Gaussian Processes through Variational Inducing Kernels

Interest in multioutput kernel methods is increasing, whether under the guise of multitask learning, multisensor networks or structured output data. From the Gaussian process perspective a multioutput Mercer kernel is a covariance function over correlated output functions. One way of constructing such kernels is based on convolution processes (CP). A key problem for this approach is efficient i...

متن کامل

MiDGaP: Mixture Density Gaussian Processes

Gaussian Processes (GPs) have become a core technique in machine learning over the last decade, with numerous extensions and applications. Although several approaches exist for warping the conditional Gaussian posterior distribution to other members of the exponential family, most tacitly assume a unimodal posterior. In this paper we present a mixture density model (MDM) allowing multi-modal po...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2020

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2019.2946082